Biological Agency: Its Subjective Foundations and a Large-Scale Taxonomy
نویسندگان
چکیده
منابع مشابه
Biological Agency: Its Subjective Foundations and a Large-Scale Taxonomy
We will outline a theory of agency cast in theoretical psychology, viewed as a branch of a non-eliminativist biology. Our proposal will be based on an evolutionary view of the nature and functioning of the mind(s), reconsidered in a radically subjectivist, radically constructivist framework. We will argue that the activities of control systems should be studied in terms of interaction. Specific...
متن کاملvalidation of a revised logical-mathematical intelligence scale and exploring its relationship with english language proficiency
نظریه هوش چندگانه قسمتهای متفاوت هوش بشری را مورد بررسی قرار می دهد که با شناخت آن شخص به درک بهتری از توانایی های خود میرسد و در نتیجه سعی در استفاده از آن جهت یادگیری بهتر میکند. همچنین با شناخت استعداد دانش آموزان، فرایند یادگیری بهتر میشود. هدف از انجام دادن این تحقیق بررسی رابطه بین هوش ریاضی و استعداد یادگیری زبان انگلیسی میباشد. برای انجام این تحقیق از پرسشنامه هوش ریاضی که توسط شیرر در ...
Deriving a Large-Scale Taxonomy from Wikipedia
We take the category system inWikipedia as a conceptual network. We label the semantic relations between categories using methods based on connectivity in the network and lexicosyntactic matching. As a result we are able to derive a large scale taxonomy containing a large amount of subsumption, i.e. isa, relations. We evaluate the quality of the created resource by comparing it with ResearchCyc...
متن کاملA Large Scale Taxonomy Mapping Evaluation
Matching hierarchical structures, like taxonomies or web directories, is the premise for enabling interoperability among heterogenous data organizations. While the number of new matching solutions is increasing the evaluation issue is still open. This work addresses the problem of comparison for pairwise matching solutions. A methodology is proposed to overcome the issue of scalability. A large...
متن کاملLearning Taxonomy Adaptation in Large-scale Classification
In this paper, we study flat and hierarchical classification strategies in the context of largescale taxonomies. Addressing the problem from a learning-theoretic point of view, we first propose a multi-class, hierarchical data dependent bound on the generalization error of classifiers deployed in large-scale taxonomies. This bound provides an explanation to several empirical results reported in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Psychology
سال: 2016
ISSN: 1664-1078
DOI: 10.3389/fpsyg.2016.00041